High Field ESR on LiCu$_2$O$_2$

László Mihály (Stony Brook University & National Synchrotron Light Source, BNL)
Helmuth Berger (EPFL)
László Forró (EPFL)

Thanks to
Diyar Talbayev (LANL)
Larry Carr (BNL)
András Jánossy (BUTE)
Instrument: Magnet & Spectrometer

Sample:

Incident light always along \(a \)

External field can point parallel or perpendicular to plane: along \(a \), or \(b \) or \(c \)

Polarization: along \(a \) or \(c \)

B23.00013: Laszlo Mihaly: ESR on LiCu\textsubscript{2}O\textsubscript{2}
Brookhaven Lab, NSLS, U12IR

B23.00013: Laszlo Mihaly: ESR on LiCu₂O₂
Spectrometer Magnet, Detector

14/16 Tesla

8 - 200 cm\(^{-1}\)
(Up to visible)

1.8K-300K

Transmission
ESR: magnetic field dependent optical absorption, $q = 0$ magnon gap

- CuSO_4: “paramagnetic” standard (Mihaly)
- LaMnO_3: antiferromagnet T_N=135K (Jianshi Zhu, U. Texas)
- NaNiO_2: triangular spin array (DeBrion, GHMFL)
- LiCu_2O_2: spin $\frac{1}{2}$ chain T_c=24K (Berger/Forró, EPFL)
- $\text{Ni}_5(\text{TeO}_3)_4\text{Cl}_2$ spin 1 planar T_c=23K (Berger/Forró, EPFL)
- $\text{BaCu}_2\text{Si}_2\text{O}_7$, $\text{BaCu}_2\text{Ge}_2\text{O}_7$, $\text{BaCu}_2\text{SiGeO}_7$: T_c~9K (Zheludev, ORNL)

- Mn_{12}-acetate: effective spin 10, large anisotropy (Tu, Sarachik, CUNY, Y23.00007)
- Dimitri Basov (UC San Diego), Andrei Sirenko (NJIT), Adrain Gozar (BNL) ...
LiCu$_2$O$_2$

two copper sites, spin $\frac{1}{2}$ Cu$^{++}$ ions make triangular ladder

A.M. Vorotynov et al. JETP 86, 1020 (1998)
A.A. Gippius et al., PRB 70, 020406 (2004)
T. Masuda et al., PRL, 92, 177201 (2004);PRB, 72, 014405 (2005)
LiCu₂O₂

From Masuda et al., PRL 92, 177201 (2004)

Order: q=(0.5, 0.174, 0.5)
Frustrated exchange coupling

\[\mathcal{H} = \sum_{i,j} J_1 S_{i,j} S_{i+1,j} + J_2 S_{i,j} S_{i+2,j} + J_4 S_{i,j} S_{i+4,j} + J_{\perp} S_{i,j} S_{i,j+1} - g\mu_B H S_{i,j}^y + \mathcal{H}' \]

- \(J_1 = 6.4 \text{meV} \)
- \(J_2 = -11.9 \text{meV} \) (ferromagnetic.)
- \(J_4 = 7.4 \text{meV} \)
- \(J_{\perp} = 1.8 \text{meV} \)

From neutron scattering

Frustration --> helical spin order.

\(J \)-s are not enough! What selects the plane of the helix? How large is the gap at \(q=0 \) in the magnon spectrum?

Exchange anisotropy

\[\mathcal{H}' = D_{\perp} S_{i,j}^y S_{i+1,j}^y \]

ESR provides the answer
Temperature dependence

Field dependence at several temperatures

LiCu$_2$O$_2$ transmission relative to 0T

Transmission ratio

Wavenumber (cm$^{-1}$)

Temperature dependence at fixed field (12T)

Transmission ratio

Wavenumber (cm$^{-1}$)

Temperature dependence at fixed fields

Paramagnetic state: \(g=2.3 \) Signal disappears around transition temperature, recovered at higher frequency at low T.
Field dependence at low temperature

Field applied perpendicular to plane of helix.
Zero field: Spin gap of 11.5cm⁻¹=1.4meV
Average of three data set
- three main findings

- Zero field gap:
 \[\Delta = 11.5 \text{cm}^{-1} = 1.4 \text{meV} \]

- Field dependence:
 \[\omega \propto \sqrt{H^2 + H_0^2} \]

- Absorption depends strongly on field
Contrast to: LaMnO$_3$

$\text{Ni}_5(\text{TeO}_3)_4\text{Cl}_2$

L. Mihály, T. Fehér, B. Náfrádi, H. Berger
L. Forró, to be published

B23.00013: Laszlo Mihaly: ESR on LiCu$_2$O$_2$
Field dependence: theory

Helical order with canting

\[J' = \frac{J(2Q) + J(0) - J(Q)}{4} \]

Zero field gap:

\[\Delta = 2S \sqrt{J' \cos(\phi/2) D_{ex}} \]

Two branches.
ESR susceptibility is strongly field dependent, weak signal for upper branch

LiCu$_2$O$_2$ Conclusions

Spin gap at $q = 0$: $\Delta = 11.5 \text{cm}^{-1} = 1.4 \text{meV}$

Exchange anisotropy: $D_{\text{ex}} \cos (\phi/2) = 0.079 \text{meV}$
with $\phi = 5.2 \text{ rad}$.

Estimates of quantum fluctuations (Anderson): $\Delta S = 0.125$
$S = 1/2$ \rightarrow $S_{\text{eff}} = 0.375$

Reduced g factor of $g = 1.8$