Pressure-Induced Phase Transitions in \(\text{Ca}_{n+1}\text{Ru}_n\text{O}_{3n+1} \) (n=1,2) and \(\text{TiSe}_2 \):
Raman Spectroscopic Studies

C.S. Snow,\(^1\) S.L. Cooper,\(^1\) G. Cao,\(^2,3\) J.E. Crow,\(^3\) H. Fukazawa,\(^4\) S. Nakatsuji, \(^3,4\) Y. Maeno\(^4\)

\(^1\) Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
\(^2\) Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
\(^3\) National High Magnetic Field Laboratory, Tallahassee, Florida 32310
\(^4\) Department of Physics, Kyoto University, Kyoto 606-8502, Japan, and CREST, Japan Science and Technology Corporation, Japan

We have developed a new system capable of making inelastic light scattering measurements simultaneously at high-pressures (100 kbar), low-temperatures (3.2K), and in a magnetic field (8T). We present results from the ruthenates and \(\text{TiSe}_2 \), a CDW material. The ruthenate, \(\text{Ca}_3\text{Ru}_2\text{O}_7 \), undergoes a metal-insulator transition at 56K and a paramagnetic-antiferromagnetic transition at 48K at atmospheric pressure. Our results reveal a pressure-induced decrease in the metal-insulator transition all the way down to a T=0 phase transition, with a concomitant decrease and eventual destruction of the antiferromagnetic state. The results on the bi-layered \(\text{Ca}_3\text{Ru}_2\text{O}_7 \) are compared to the single layered \(\text{Ca}_2\text{RuO}_4 \), where 5 kbar drives the system into a metallic state while higher pressures reveal a coexistence of ferromagnetism and antiferromagnetism. \(\text{TiSe}_2 \) develops a commensurate Charge Density Wave (CDW) below 200K at atmospheric pressure and our preliminary results show the destruction of the CDW insulating state at 3.5K at a pressure of 20 kbar.