Low-energy excitations in Mo-S nanotubes:

Dragan Mihailovic
Jozef Stefan Institute, Ljubljana, Slovenia

Acknowledgments:
Ales Mrzel, D.Vrbanic (synthesis), Maja Remškar (El. Microscopy)
Denis Arčon, Pavle Cevc (ESR), J.Demsar (transport)
Jozef Stefan Institute, Ljubljana
Zvonko Jaglicic (SQUID meas.)
F. Mathematics and Physics, Univ. of Ljubljana, Slovenia.
+ Valencia molecular magnets group (ESF MOLMAG Program)
Robert Dominko (Electrochemistry) (National Chemistry Institute)
Laszlo Forro, A.Kis (Mechanical properties) (EPFL)
Leo Degiorgi (ETH Zurich) : Infrared spectroscopy
Shadyar Farhangfar and Christian Schoenberger, (University of Basel)
V.Derycke, Ph.Avouris (IBM), STM:A.Hassanien
Why should we be interested?

- Mo-chalcogenide nanotubes are a new class of 1-D objects, in many respects similar to carbon NTs - potentially better:
 - they are all the same,
 - easily dispersed
 - no problem with sorting different tubes
 - they can be doped, etc.

- In bundles, they are very weakly coupled to each other: leading to enhanced 1D properties

- They exhibit very peculiar magnetic properties when doped with Li

-
Why should we be interested?

Potential applications

Li batteries

Composites

Field emission

Commercially available in near future
Outline

• Brief introduction
 – structure
 – transport (resistivity and infrared)
• Li doping
• Peculiar magnetic properties
Electron microscopy images of MoS$_{2-y}$ NTs

Remskar et al, Science 2001
MoS$_{2-y}$I$_{y}$ NTs - structure

Simulation

Space group $P6_3$ (C_6^6)

Unit cell: 18 atoms

$a = b = 0.96$ nm, $c = 0.4$ nm

Shear modulus of MoS_2 nanotube bundles

\[F = 1 \text{nN} \]

Shear modulus $G = 17 \text{ MPa}$

The forces between the NTs are extremely weak!

A. Kis and L. Forro
Some predicted band structures
(DFT calculations; M. Verstraten and J-C. Charlier, Leuven)

zigzag, I interstitial

armchair, I centered
MoS$_{2-y}$ Resistivity measurements on “mats”

Some experimental details:
• 4 and 2-probe measurements gives similar results
• Gold and silver contact paste gave same results

$\rho = \rho_0 \exp[T_a/T^{1/4}]$ gives a relatively good fit, where ρ_0 differs significantly from sample to sample, but T_a does not!

VRH implies a finite DOS at E_F
STM measurements

Hassanien et al (2002)
MoS$_2$ Nanotube bundles on 10 nm SiO$_2$ with Ti electrodes

P.Avouris and V.Derycke, IBM

sample: Jozef Stefan Institute
Resistivity appears metallic at 300K

I-V characteristic at 300 K

Effect of annealing: contact improvement

Gating effect

P. Avouris and V. Derycke, IBM
MoS$_{2-y}$ NTs: I-V measurements on individual tubes

Shadyar Farhangfar and Christian Schoenberger, University of Basel, unpub. 2002
Reflectivity measurements

L. Degiorgi (ETHZ)
Li doping
Electrochemical Li insertion into MoS$_2$ NTs

Li-MoS-NT - Li charging/discharging performance

Where does the Li go?

Effect of dispersion and de-iodination
Magnetic susceptibility of Li_xMoS_2-

\[
\chi = \chi_{\text{Curie}} + \chi_{\text{Pauli}}
\]

where

\[
\chi_{\text{Curie}} = \frac{C}{(T+\theta)}
\]

\[
\chi_{\text{Pauli}} = \chi_0 + \chi_1 T
\]

$\chi_{\text{Pauli}} = 1.4 \times 10^{-2} \text{ emu mol}^{-1}\text{Oe}^{-1}$

($\chi_{\text{Li}} = 2.4 \times 10^{-5} \text{ emu mol}^{-1}\text{Oe}^{-1}$)
Magnetic susceptibility of Li$_x$MoS$_{2-y}$ sample-to-sample variations
Magnetisation of Li$_x$MoS$_{2-y}$ NTs in large field

\[M(H) = kH + M_0B[S, H, T] \]

\[k = 2 \times 10^{-3} \text{ emu/mol-Oe} \]
Magnetisation of $\text{Li}_x\text{MoS}_2-y$ NTs
sample-to-sample variations

$M(H) = kH + M_0\mathcal{B}[S, H, T]$
Magnetisation of Li\textsubscript{x}MoS\textsubscript{2-y} NTs in small field*

\[M(H) \times 10^{-3} \text{ [emu]} \]

\[H \text{ [kOe]} \]

\[S = 1/2 \]

\[S = 25 \]

\[B[S, H, T] \]

(*The linear term is subtracted)
Static susceptibility χ_0 on Li$_x$MoS$_{2-y}$ NTs (from ESR intensity)

Denis Arcon et al (2002)
Experimental arguments for an intrinsic FM state:

- Undoped MoS$_2$ NTs show a very small (unmeasurable) susceptibility
- Magnetic properties disappear when exposed to air (Li reaction).

- Mo (metal) is diamagnetic
- Li has a small Pauli susceptibility $\chi \sim 10^{-5}$ emu/mol (not FM)
- Mo does not usually form FM compounds
 (some Mo spinels exist with T_cs 10-28K)
How can we understand the unusual magnetic behaviour?
Magnetic properties of carbon nanotubes

Chauvet et al., PRB 1995

Ajiki and Ando (1993)
Susceptibility of quasi-1D crystals

Johnson et al, 1985
1D-metal and Pauli susceptibility

From fits to the data $\chi_0 = \mu_0 \mu_B^2 N(E)$, we would obtain:

$$N(E) \approx 300 \text{ states/eV/f.u.}$$

Stoner enhancement due to e-e interactions:

$$\chi = \frac{\chi_0}{1 - IN(E)}$$

From experiments, $1 - IN(E) \sim 10^{-3}$

(Condition for ferromagnetism : $IN(E) > 1$)
Susceptibility of Luttinger liquids

1. Dzyaloshinski and Larkin (1972)
2. Lee et al (1977)

High T (QMC):

\[H \approx \sum_{k,\varepsilon,\mu} c_\varepsilon(k)c_\varepsilon \pi(k)c_{\varepsilon,\mu}(k) \]
\[+ \sum_{k,\varepsilon,\lambda,\mu} c_\varepsilon(k)c_{\varepsilon,\lambda}(k)c_{\varepsilon,\mu}(k) \]
\[+ \sum_{k,\varepsilon,\lambda,\mu} c_\varepsilon(k)c_{\varepsilon,\lambda}(k)c_{\varepsilon,\mu}(k) \]
\[+ \sum_{k,\varepsilon,\lambda,\mu} c_\varepsilon(k)c_{\varepsilon,\lambda}(k)c_{\varepsilon,\mu}(k) \]

Low temperature limit, as \(T \to 0, \)
\[\partial \chi / \partial T \to \infty \]
(RG result)
Conclusions

Li-doped MoS NTs exist in a peculiarly stable high-susceptibility strongly correlated spin state with coexisting ferromagnetic spin clusters with $S=10-100$

Careful experimental considerations indicate that the state is intrinsic

Can we rely on DFT calculations to give the correct structure?