Raman-scattering evidence for a metal-insulator transition in strongly overdoped cuprates

R. Hackl1, F. Venturini1, M. Opel1, T. P. Devereaux2, J. K. Freericks3, I. Tüttö4, B. Revaz5, E. Walker5, H. Berger6, L. Forró6

1Walther Meissner Institute, Bavarian Academy of Sciences, 85748 Garching, Germany
2Department of Physics, University of Waterloo, Waterloo, Ontario Canada N2L 3G1
3Department of Physics, Georgetown University, Washington, DC 20057, U.S.A.
4RISPO, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest, Hungary
5DPMC, University of Geneva, 1121 Genève, Switzerland
6EPFL, Éculens, 1025 Lausanne, Switzerland

We discuss results from inelastic light scattering experiments on electronic excitations in cuprates over a wide range of doping. At high doping well beyond the level optimal for T_c, the quasiparticle dynamics are isotropic and similar to those expected for conventional metals. At lower doping strong anisotropies in the quasiparticle relaxation and pronounced discrepancies between single- and many-particle probes develop. The results can be interpreted in terms of an unconventional metal-insulator transition with an anisotropic gap which disappears for doping levels above approximately 0.22 holes/CuO$_2$. We try to make a connection between this phenomenon and various other anomalies in underdoped cuprates such as the pseudogap or charge ordering.