Far-infrared and submillimeter-wave conductivity in electron-doped cuprate
La$_{2-x}$Ce$_x$CuO$_4$

A. Pimenov, 1 A. V. Pronin, 1, 2 A. Loidl, 1 A. Tsukada, 3 and M. Naito 3

1Experimentalphysik V, EKM, Universität Augsburg, 86135 Augsburg, Germany
2General Physics Institute of the Russian Acad. of Sciences, 119991 Moscow, Russia
3NTT Basic Research Laboratories, 3-1, Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan

We performed far-infrared and submillimeter-wave spectroscopy in the electron-doped cuprates La$_{2-x}$Ce$_x$CuO$_4$. The onset of the absorption in the superconducting state appears gradual in frequency and is inconsistent with a BCS gap. Instead, a narrow quasiparticle peak is observed at zero frequency and a second peak at finite frequencies. The infrared conductivity as well as the suppression of the quasiparticle scattering rate below T_c are qualitatively similar to the results in the hole-doped cuprates.

In addition, the conductivity has been investigated for La$_{2-x}$Ce$_x$CuO$_4$ films tilted 1° off from the ab-plane. The effective conductivity measured in this geometry reveals an intensive peak at finite frequency ($\nu \sim 50$ cm$^{-1}$) even in the normal state, which is due to a mixing of the in-plane and out-of-plane responses. The peak disappears for the pure in-plane response transforming into a Drude-like contribution. Comparative analysis of the mixed and the in-plane contributions allows to extract the c-axis conductivity which shows a Josephson plasma resonance in the superconducting state.