Spin gap excitations in α-NaV$_2$O$_5$ studied by far-infrared spectroscopy

T. Rõõm, D. Hyvonen, U. Nagel
National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia

R.K. Kremer
Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Sodium vanadate, α-NaV$_2$O$_5$, is a quarter-filled spin-ladder compound which undergoes a phase transition at $T_s = 34$K. Below T_s, a new phase with a different lattice, charge and magnetic order emerges. New lattice order appears as a doubling of the unit cell along ladder legs (b-axis) and rungs (a-axis) and quadrupling in the c-direction. Rung-centered $V^{3+4.5}$ charge order changes to zig-zag order of V^{14} and V^{15} charges. In the magnetic excitation spectrum spin gap opens and two branches are observed by inelastic neutron scattering. The lower branch has been identified as a singlet to triplet excitation by high field electron spin resonance. We study lattice, charge and magnetic excitations by far-infrared spectroscopy between 3 and 200 cm$^{-1}$ and in magnetic fields up to 12T. In zero magnetic field the triplet resonance appears at 65.4 cm$^{-1}$. By applying magnetic field we observe all three transitions from the singlet ground state to the triplet sublevels $S_z = -1, 0, +1$ and study their selection rules in Faraday and Voigt configurations. The zero-field splitting between the triplet state sublevels is less than 0.2 cm$^{-1}$. It appears that the dominant interaction responsible for the oscillator strength of otherwise forbidden singlet to triplet transition is the coupling of the triplet state to other excitations.