Beamline U12IR (National Synchrotron Light Source) utilizes infrared synchrotron radiation from a bending magnet. A combination of beamline design features and spectroscopic instrumentation allows the facility to reach the extremely low frequency limit of \(\sim 2 \text{ cm}^{-1} \) (\(\equiv 60 \text{ GHz} \) or \(250 \mu\text{eV} \)) at rather high resolution. A 16 T magnet is also available.

The high brightness of the synchrotron emission yields substantial benefits for the study of small (mm-sized) samples. Below \(20 \text{ cm}^{-1} \) the synchrotron radiation is more intense than that from a high-pressure mercury lamp.

A key feature of the beamline is a facility for sub-nanosecond time-resolved (pump-probe) infrared spectroscopy. (This capability may also be applied to the infrared–visible at U10B.) A mode-locked Ti:sapphire laser produces near-IR or (with doubling) visible pump pulses synchronized to probe pulses from the synchrotron. The broadband infrared from the synchrotron allows the entire spectral range from 2–20,000 cm\(^{-1}\) (0.25 meV–2.5 eV) to be probed. A temporal resolution of 200 ps, limited by the infrared synchrotron-pulse duration, may be achieved. A maximum time delay of 170 ns is available without gating the infrared detector.

Data from the beamline from studies of semiconductors and superconductors will be presented.

This research has been supported by the U.S. Department of Energy through contracts DE-FGO2-96ER45584 and DE-FG02-02ER45984 at the University of Florida and DE-ACO2-98CH10886 at the NSLS.